ELECTRO HYDROSTATIC ACTUATORS

A NEW APPROACH IN MOTION CONTROL

2nd Workshop on Innovative Engineering for Fluid Power
Sep 2-3 2014
Agenda

• Introduction - MOOG

• Actuation Technologies

• Electro Hydrostatic Actuators

• Applications
FOCUS IN HIGH PERFORMANCE MOTION CONTROL

Established in 1951, by Bill Moog

HIGH PERFORMANCE MOTION CONTROL SOLUTIONS FOR INDUSTRIAL, MILITARY AND AEROSPACE APPLICATIONS.

Sales (2013) = US$ 2.6 Billion

11,600 employees
MOOG do Brasil Controles Ltda

Rua Prof Campos Oliveira, 338
Rua Agostinho Togneri, 457 Sto Amaro, São Paulo Phone (11) 3572-0400
<table>
<thead>
<tr>
<th>GROUPS</th>
<th>Aircraft Group</th>
<th>Industrial Group</th>
<th>Space and Defense Group</th>
<th>Components Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>primary and secondary flight control, engine controls</td>
<td>high performance motion control for industrial applications, test (aerospace and</td>
<td>missiles and launchers trajectory control, antenas and solar panels positioning, satelites</td>
<td>Slip rings, small motors, rotating joints, fiber optics interfaces, air cooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>automotive), simulation</td>
<td>atitude control</td>
<td>solutions</td>
</tr>
</tbody>
</table>

![Airplane](image1.png)

![Wind Turbine](image2.png)

![High Performance Motion Control](image3.png)

![Schmools and Launchers](image4.png)

![Components Group](image5.png)
INDUSTRIAL GROUP - PRODUCTS

Servovalves
INDUSTRIAL GROUP - MARKETS

TURBINES
- Wind
- Gas, oil, hydro

SIMULATION

TEST
- Aerospace
- Automotive

HEAVY INDUSTRY
- Steel mills

METAL FORMING
- Presses

AFTERMARKET
- Oil & Gas
- Formula 1
- Repairs
Agenda

• Introduction - MOOG

• Actuation Technologies
 • Electro Hydrostatic Actuators
 • Applications
SERVOCONTROL = closed loop motion control

LINEAR
- position: x
- velocity: $\dot{x} = \frac{dx}{dt} = v$
- acceleration: $\ddot{x} = \frac{dv}{dt} = a$
- force: F
- pressure: p

ROTARY
- angular position: θ
- velocity: $\dot{\theta} = \frac{d\theta}{dt} = \omega$
- acceleration: $\ddot{\theta} = \frac{d\omega}{dt} = \alpha$
- torque: T

Position Servocontrol

- **ERROR**
- **FEEDBACK**
- **TRANSUDER**
- **SERVO AMPLIFIER**
- **POSITION SET POINT**
- **FLOW**
- **VELOCITY**
- **POSITION**

Diagram showing the control system with inputs and outputs, and the equations for linear and rotary motion control.
ACTUATION TECHNOLOGIES

Electro-hydraulic

Electro-mechanical

Electro-hydrostatic
Elements: pump, servovalve, hydraulic cylinder.

Power is transmitted by the fluid \[P = Q \cdot p = (\text{flow} \times \text{pressure}) \]
ACTUATION TECHNOLOGIES
ELECTRO-MECHANICAL

Elements: servomotor, gearbox, ball/roller screw

Power is transmitted by the mechanics \(P = T \cdot \omega = (\text{torque} \times \text{rotation}) \)
Elements: servomotor, pump, hydraulic cylinder.

Power is transmitted by the mechanics \(P = T \cdot \omega = \) (torque \times rotation) and by the fluid \(P = Q \cdot p = \) (flow \times pressure)
ACTUATION TECHNOLOGIES

Comparison

<table>
<thead>
<tr>
<th>Electro-Hydraulic - EH</th>
<th>Electro-Mechanical - EMA</th>
<th>Electro-Hydrostatic - EHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ High robustness and reliability</td>
<td>+ High energy efficiency</td>
<td>+ Good energy efficiency</td>
</tr>
<tr>
<td>+ Ideal for high & static forces</td>
<td>+ Powered by wire (no HPU)</td>
<td>+ Powered by wire (no HPU)</td>
</tr>
<tr>
<td>+ Fail-safe options</td>
<td>+ Easy installation and commissioning</td>
<td>+ Easy installation and commissioning</td>
</tr>
<tr>
<td>+ Easy redundancy (2+ actuators)</td>
<td>+ Environmental cleanliness</td>
<td>+ High robustness and reliability</td>
</tr>
<tr>
<td>+ No backlash</td>
<td>+ Well suited for rotary actuation</td>
<td>+ Fail-safe options</td>
</tr>
<tr>
<td>+ Easy maintenance</td>
<td>+ High stiffness</td>
<td>+ Easy redundancy (2+ actuators)</td>
</tr>
<tr>
<td>+ High frequency operation</td>
<td></td>
<td>+ No backlash</td>
</tr>
<tr>
<td>+ Compact size</td>
<td></td>
<td>+ Good for high & static forces</td>
</tr>
<tr>
<td>+ Light weight</td>
<td></td>
<td>+ Unlimited hydraulic gearbox ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low energy efficiency</td>
<td>- Heavy weight</td>
<td>- Weight</td>
</tr>
<tr>
<td>- Requires HPU* & piping</td>
<td>- No fail safe (gearbox can block)</td>
<td>- Higher cost</td>
</tr>
<tr>
<td>- Environment contamination</td>
<td>- No redundancy (single actuator)</td>
<td>- Complexity</td>
</tr>
<tr>
<td></td>
<td>- High power consumption to hold static load</td>
<td>- Electrical noise</td>
</tr>
<tr>
<td></td>
<td>- Backlash</td>
<td>- Limited stiffness</td>
</tr>
<tr>
<td></td>
<td>- High maintenance effort ($)</td>
<td>- Power consumption to hold static load</td>
</tr>
<tr>
<td></td>
<td>- Electrical noise</td>
<td></td>
</tr>
</tbody>
</table>

*HPU: hydraulic power unit = motor + pump + filtering + cooling
Agenda

• Introduction - MOOG

• Actuation Technologies

 • Electro Hydrostatic Actuators

• Applications
EHA - AN OLD CONCEPT

Hydrostatic transmissions have been used in a wide range of mobile applications

Same principles can be applied to get a “Basic EHA”
+ No need for a “separated” HPU
+ Self contained hydraulic system
- Low frequency response
- Requires auxiliary devices (cooling, filtration, anti-cavitation)
EHA - DEVELOPMENTS

1) Replacing the variable pump by a fixed pump + servo motor
 • Gear Pump: lower cost, loss of performance
 • Piston Pumps: higher cost, better efficiency

2) Adding filtering, small accumulator (to keep system pressurized) and anti-cavitation check valves.
EHA – OPERATION

Balanced Cylinder

- Fixed pump
- Servomotor
- Anti-cavitation valves
- Small accumulator
3) Dealing with unbalanced cylinders
 Requires:
 • large accumulator: to hold the differential oil volume
 • pilot operated anti-cavitation check valves: to assure the pressurization of the pump port to avoid cavitation
EHA – OPERATION

Unbalanced Cylinder

extend

fixed pump

servomotor

anti-cavitation valves
(one is pilot operated)

large accumulator

retract
EHA – Dealing with unbalanced cylinders

- 3 ports pump, for unbalanced flow control
EHA – CONTROL ARCHITECTURE

Position Transducer

Position Feedback

Hydraulic Cylinder

Bidirectional pump

Servomotor

Position Command
EHA – CONTROL ARCHITECTURE

MACHINE <-> EHA

Machine Cabinet
- PLC

Axis Cabinet
- Motion Control
- Frequency Converter

Actuator
- Power Conversion:
 - Electrical V-I → Mechanical T-ω → Hydraulic p-Q → Mechanical F-v
EHA – CONTROL ARCHITECTURE

DYNAMIC BEHAVIOR

Large, low speed, high torque pump

Small, high speed, low torque pump
EHA – SAFETY based on spring

Normal Operation

Fail Safe Movement

extend
EHA – SAFETY based on accumulator

Normal Operation - extend

Normal Operation - retract
EHA – SAFETY based on accumulator

Fail Safe Movement - extend

 Accumulator Recharge
Agenda

• Introduction - MOOG

• Actuation Technologies

• Electro Hydrostatic Actuators

• Applications
APPLICATIONS

EHA applications

• Injection molding machines
• Metal Forming & Presses
• Flight Control
• Wind turbines pitch control
APPLICATION
INJECTION MOLDING AND DIE CASTING MACHINES
Clamp Unit & Ejector
APPLICATION
METAL FORMING & PRESSES

CUSHION CONTROL - velocity and pressure control
APPLICATION

LOCKHEED MARTIN F-35 PRIMARY & SECONDARY FLIGHT CONTROLS
APPLICATION - FLIGH CONTROL

Features
• Manageable failure modes
• Flexible packaging
• Multiple electrical channels possible
• High power consumption to hold load

• Overload relief
• Multiple failure modes:
 ✓ Normal servocontrolled operation
 ✓ Bypass (to allow other actuators to operate control surface)
 ✓ Damped
 ✓ Blocked
 ✓ Damped - Blocked
APPLICATION – FLIGHT CONTROL - REDUNDANCY

Bypass

Active

Bypass

Blocked

(or dampered)
APPLICATION – FLIGHT CONTROL - REDUNDANCY

Active 1

Blocked

(or dampered)

Blocked

Active 2
APLICATION - BLADE PITCH CONTROL
Wind Turbine

PITCH CONTROL SYSTEM: adjusts the pitch turbine blade angle.

• 3 blades follow the same command (synchronized)
• The turbine main controller sets blade pitch angle
• The pitch control system is assembled inside the blades and rotates with the turbine.
1. STOP the turbine in case of emergencies and failures

2. MAXIMIZE energy conversion in a large wind speed range

\[
\text{Power} \approx \text{pitch angle} \cdot (\text{wind speed})^3
\]

CONFIABILITY is the main feature of a pitch control system
APLICATION - BLADE PITCH CONTROL

Wind Turbine

Blade
Hub

worker
Blade

Wind farm

Blade
Hub

workers

worker
Hub
APLICATION - BLADE PITCH CONTROL

Wind Turbine
APLICATION - BLADE PITCH CONTROL

Wind Turbine
APPLICATION - BLADE PITCH CONTROL

Wind Turbine
That’s all folks!

For additional info, please contact: Mario Valdo
mvaldo@moog.com
phone: +55 (11) 3572-0404

MOOG do Brasil Controles Ltda
Rua Prof Campos de Oliveira, 338
04675-100 São Paulo –SP
Phone :+55 (11) 3572-0400
info.brazil@moog.com
www.moog.com.br
HYDROSTATIC TRANSMISSION
SERVOPUMP

Swashplate position mechanical feedback
Normal Operation
EHA – SAFETY BALANCED CYLINDER

Fail-Safe Movement
Electro-Hydrostatic Actuation

- Power on demand, Energy efficient, Energy recovery
- Powered by wire
 - Self-contained
 - No hydraulic piping
- Additional features
 - e.g. fail safe
- Low noise
- High force capability
Electro-Hydrostatic Actuation

Balanced EHA

1. Hydraulic cylinder
2. Radial piston pump
3. Motor
4. Check valve
5. Low pressure reservoir

Unbalanced EHA

1. Hydraulic cylinder
2. Radial piston pump
3. Motor
4. Check valve
5. Low pressure reservoir

High pressure
Medium pressure
Low pressure